
What Went Wrong: A Taxonomy of Video Game Bugs

Chris Lewis, Jim Whitehead, Noah Wardrip-Fruin
University of California, Santa Cruz

1156 High St, Santa Cruz, California, USA
{cflewis,ejw,nwf}@soe.ucsc.edu

ABSTRACT
Video games are complex, emergent systems that are diffi-
cult to design and test. This difficulty invariably leads to
failures being present in the game, negatively impacting the
play experience of some. We present a taxonomy of pos-
sible failures, divided into temporal and non-temporal fail-
ures. The taxonomy can guide the thinking of designers and
testers alike, helping them expose bugs in the game. This
will lead to games being better tested and designed, with
fewer failures when released.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions; D.2.5 [Software Engineering]: Testing and Debug-
ging; K.8.0 [Personal Computing]: General

Keywords
video game, failure, fault, error, bug, taxonomy

1. INTRODUCTION
Most gamers think game bugs are bad. Bugs can cause

a game to crash, disturb game balance, or ruin an engaging
game session. However, there is a sub-community of gamers
who actually like bugs. Not in the resigned sense of, “I like
this game, bugs and all.” Rather, in the more active sense
of liking to find bugs, being motivated by the potential that
a game bug might exist, and hence so motivated as to spend
hours trying various quirky button and movement combi-
nations in hopes of revealing a game bug. For these select
few, game bugs are a passion, a hobby, with one imperative:
videos showing bugs must be posted on YouTube.

YouTube’s bug videos are a rich resource that mix cre-
ativity, subversiveness and pure chance. The videos avail-
able provide a startling amount of coverage; far more than
any single research group could ever hope to expose per-
sonally. We became motivated to understand the variety of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FDG 2010 June 19-21, Monterey, CA, USA
Copyright 2010 ACM 978-1-60558-937-4/10/06 ...$10.00.

Figure 1: An image of a YouTube video showing the
“Jesus Shot,” a failure from Tiger Woods ’08 where
Tiger Woods is able to walk on water.

video game bugs, which could form the groundwork for un-
ravelling the complexities of testing and verifying modern,
emergent gameplay. YouTube presented a perfect starting
point.

After watching many videos demonstrating curious bugs
across a wide range of games and genres, we began to no-
tice patterns emerging. Several of the videos showed bugs
pertaining to defects in collision detection, while others had
unexpected emergent behavior of physics engines, and so
forth. These similarities indicated that a categorization of
these buggy gameplay experiences was possible, leading to
new methods of analyzing and solving video game bugs.

In some areas, particularly that of computer science, tax-
onomies have been used to create an organized, systematic
approach to understanding a wide variety of data. Vija-
yaraghavan & Kaner found taxonomies commonly used in
the areas of security, computer system architectures and
computer inputs [16]. They showed that the introduction of
a bug taxonomy aided testers in focusing their thoughts, al-
lowing them to generate new test cases and creating greater
coverage of the system. Such taxonomies can also be used to
validate test plan coverages and help newcomers understand
the problem areas.

In this paper, we present a taxonomy of video game fail-
ures, which exists as a living document online, complete with

verifiable examples in a video archive [2]. This taxonomy
will not only help guide current human testing, but also
provide a framework to validate the coverage of new testing
paradigms that may emerge.

2. TERMINOLOGY
This paper discusses a separation between a game design

specification and its implementation, so it is important to
understand the scope of these two terms:

Specification The game design specification, or game de-
sign document, is the game designer’s formal specifica-
tion for how the game and its systems should operate
to create the intended gameplay experience.

Implementation The implementation of a game is any as-
set created in order to make the specification into a
playable game: source code, art, level designs, etc.

Throughout our discussion, we will formalize the term
“bug” into three layers: fault, error and failure. Let us start
with an example, as seen in Figure 1 (Category: Object out
of bounds for any state). This infamous bug is referred to
as the “Jesus Shot,” prompting a humorous video response
from EA Sports showing the real-life Tiger Woods perform-
ing a shot out of a lake, claiming, “It’s not a glitch. He’s
just that good.” [11]

Fault The lake has a parameter incorrectly set that makes
it a solid object that objects can land on, implicitly
making it part of the course.

Error The collision detection system incorrectly believes
the ball is in-bounds.

Failure Tiger appears to be walking on water when he takes
the next shot.

This example shows the distinct layers of consideration we
can give a “bug.” The terms arise from a formal terminology
for software bugs categorized by Avižienis & Laprie [3]:

Fault A fault is a phenomenon that leads to an error in the
system. Faults can occur in computer hardware, but
in this paper, we will focus on faults that are human-
created: either as a mistake during the design or im-
plementation of a video game.

Error An error is the manifestation of a fault during the
software’s execution that creates a state that could
contribute to a failure.

Failure A failure is a user-observable deviation from the
expected behavior of the system.

For consistency and clarity, we apply these terms equally
to both the game implementation and the game specifica-
tion. We understand these terms can sound unnecessarily
pejorative, but they are the accepted terms in Software En-
gineering, and we use them here to maintain consistency.

Not all faults will inevitably lead to errors, as some dor-
mant faults may never be exercised by the game during op-
eration. Similarly, not all errors will lead to failures, as some
errors in the game state might not have any adverse effect
at a user-visible level.

Note that we are unable to categorically state how the
failure occurred. Both the fault and error we posited in

our Tiger Woods ’08 example are just one of many pos-
sibilities. We must treat faults and errors as a black-box.
However, we do not comment on all the failures that we ob-
serve, focusing only on those that arise from a fault in the
implementation, not a fault in the design document. Imple-
mentation failures are a deviation of the game’s operation
from the original game specification. These failures create
unexpected “glitches” in the game world, or provide obvious
ways of breaking the game from what was intended. Classic
examples include escaping the boundaries of the game world
(Category: Object out of bounds for any state), pathfinding
leading characters into walls (Category: Artificial stupidity)
or the camera pointing the wrong way (Category: Lack of re-
quired information). These are often very easy to recognize,
and we are able to accurately pinpoint them as problems
arising from the implementation.

We disregard failures that do not exhibit obvious imple-
mentation faults, as they may have been“faults” in the game
specification itself. Issues in the game specification are of-
ten subjective, and, as such, have no reasonable means of
being classified as a fault. For example, while some players
consider bunny-hopping to attain greater speed in a first-
person shooter as being a game design failure (Category:
Invalid position over time), others believe it to be an intrin-
sic part of the gameplay. We discuss game design failures in
more detail in Section 5.

3. RELATED WORK
There have been several uses of bug taxonomies. One of

the most influential taxonomies was written by Beizer, who
categorizes general software engineering bugs, such as “Re-
quirements, Features and Functionality bugs,” “Structural
bugs” and “Data bugs” [5]. He comments on the nature of
bug taxonomies, and notes that there is no one taxonomy
that can hope to provide utility in all cases, stating that,
“There is no universally correct way to categorize bugs,” and
that there are a potentially infinite number of ways to form
a categorization. Beizer’s taxonomy is written for program-
mers who have access to source code, which is commonly not
the case for game testers. Instead, we must create our own
taxonomy that black-box game testers can utilize, as well as
create something that reflects the domain-specific problems
we encounter in video games.

The largest repository of bugs is the Common Vulnera-
bility Enumeration, containing over 40,000 issues [1]. How-
ever, the CVE is specifically focused on finding bugs that are
stepping stones to security compromises, and our taxonomy
requires the repository have a wider breadth to be useful in
this domain.

Bainbridge & Bainbridge [4] have previously attempted to
classify video game “glitches.” They categorize video game
bugs by perceived cause (i.e. the fault(s) that led to the fail-
ure), such as a hole in a level map, or undeleted test code.
They note that their taxonomy is a “best-guess,” as they are
unable to inspect the source code and other game assets.
This leads to a taxonomy that we find unsatisfying. For
example, one category named “Bizarre maneuver,” is classi-
fied as “requires... intentional behavior on the part of the
player, involving several steps and going beyond what the
game designers expected the player to do.” We believe that
such emergent (albeit perhaps subversive) play should be
encouraged, and are hesitant to apportion blame to players
themselves. As mentioned in Section 2, we do not attempt to

categorize causes, only observable failures, in order to limit
the guesswork involved.

Trade publication Game Developer often carries post-
mortems of a game’s development. Tschang surveyed these
postmortems, counting the number of positive and negative
references to aspects of game development. He notes that
testing is often mentioned, in equal parts positive and neg-
ative [15], commenting that, “This confirms testing is very
critical to video games.”

Hind & Bell discuss establishing bug criteria so the testing
team are able to correctly estimate their severity [6]. They
take an operational view of bugs, classifying them by impor-
tance, ranging from a bug that blocks the release of a game,
to one that is marked as not needing to be fixed. They
note that their examples for the severity of a bug “suggest a
graduation from obvious bug to subjective opinion.”

4. TAXONOMY
Our taxonomy can be seen in Figure 2. We will describe

it in more detail in this section.

4.1 Coverage
Lough’s investigation into taxonomies resulted in eighteen

different properties that taxonomies should satisfy [10]. Us-
ing his terminology, our taxonomy aims to be comprehen-
sible, objective (unbiased), specific (does not contain cate-
gories too broad), unambiguous and useful (provides value
to a community). We invite the academic and games com-
munities to continue developing the taxonomy as a living
document, hosted online [2].

We have designed our taxonomy to be as mutually exclu-
sive as possible, but we do not believe that this is a property
that can be realistically met in the video game domain. The
complexity of the various sub-systems at work means various
errors and failures will inevitably be cross-cutting, causing
failures to be placed in multiple categories. For example,
a Non-Player Character (NPC) blocking a doorway that a
player needs to move through creates a failure of both “Ar-
tificial stupidity” and “Action not possible.”

4.2 Methodology
To investigate the wide variety of possible failures, we

turned to various Internet articles and communities dedi-
cated to video game issues. The ability to upload evidence
of the failures to YouTube allowed us to find many exam-
ples. Searching YouTube for “video game glitches” or “video
game bugs” produces hundreds of related videos.

As we surveyed more and more videos, we began to form
categorizations of bugs, steadily redrawing lines and gen-
eralizing categories as necessary. Failures in Figure 2 are
categorized into the leaf nodes of the tree. Branch nodes
are simply used as an organizational tool.

As a way of ensuring that our taxonomy aligned with the
personal experiences of members of the games industry, we
gave the taxonomy to two experienced game designers for
review. The taxonomy was given to Damian Isla, Director
of Technology of Moonshot Games, and Ken Hullett, PhD
student at UC Santa Cruz, and former professional game
designer at companies such as Activision and Novalogic.

4.3 Temporal and non-temporal failures
The first and main tier in the taxonomy is a split between

temporal and non-temporal failures. Temporal failures are

those which require some knowledge of previous game state
in order to accurately categorize them. Non-temporal fail-
ures can be found by inspecting the game state at any point
in time.

For example, consider two possible failures of Mario’s jump-
ing in Super Mario Bros. A non-temporal example would
be Mario jumping so high as to fly off-screen: as soon as he
is above a certain height, the game has exhibited a failure
(Category: Object out of bounds for any state). Now con-
sider Mario jumping at the right height, but is able to hover
in mid-air (Category: Invalid position over time). Any sin-
gle inspection of the game state will reveal that Mario is at
a valid game height. It is only by collecting recordings of
his height over time that it is possible to detect that Mario
is hovering. As a result, we are able to categorize invalid
movements, not just invalid positions.

4.4 Categories
Each category from the taxonomy in Figure 2 is elaborated

on in Tables 1 and 2, providing examples and links to videos
displaying the failures in action. More video examples can
be found at our taxonomy web site.

4.4.1 Object out of bounds
The first non-temporal category, Object out of bounds for

any state is a classification of an object being outside of the
world boundaries. This category encompasses many com-
mon types of failures, such as escaping a map or falling
through the floor. It also catches failures that are within
world boundaries but simply non-sensical in the world fic-
tion, such as the ability to walk on water or up the side of a
building (if the game does not allow such functionality). Re-
lated to this is Object out of bounds at a specific state. This
category is similar to being out of bounds for any state, ex-
cept that the position is valid in certain contexts. Common
examples include escaping a scripted sequence, such as an
in-game narrative exposition or escaping a combat arena,
such as a boss battle where you are supposedly locked in.

4.4.2 Invalid graphical representation
An Invalid graphical representation occurs when a certain

aspect of the world state is being rendered incorrectly. Ta-
ble 1 presents a failure where a character is performing a
swimming animation when on land, but other failures in-
clude placing a certain item of clothing on a character in
Rock Band, but that item not appearing during play.

4.4.3 Invalid value change
Invalid value change is a broad term that describes any

game event that changes some form of counter in an unex-
pected way, such as a bullet that should remove health not
doing so or collecting a coin that changes the score by 100
instead of 1.

4.4.4 Artificial stupidity
Artificial stupidity is another broad category that catches

bugs related to an NPC performing some act that breaks
the illusion of intelligence. Common examples include char-
acters not responding to being shot at, blocking doorways
or walking into walls. To be more specific, this category
contains all bugs where the AI does not meet the expecta-
tion of the player. Player expectations for different NPCs in
different games vary. In a first-person shooter, one expects

Implementation
failures

Non-temporal

Temporal

Invalid position

Object out of
bounds for any

state

Object out of
bounds for specific

state
Invalid graphical
representation

Action when not
allowed

Action not possible

Invalid value
change

Invalid information
access

Lack of required
informationArtificial stupidity

Invalid position
over time

Invalid context
state over time

Invalid event
occurrence over

time

Interrupted event

Implementation
response issues

Information

Action

Information out of
order

Figure 2: A taxonomy of video game failures. The taxonomy is ordered from left-to-right, beginning at
“Implementation failures.” Non-temporal failures can be inspected at any point in time and be classified as
a failure, whereas temporal failures require knowledge of previous states before being able to confirm that a
failure has occurred.

Category Description Game Example Reference ID

Object out of bounds
for any state

For all game states, an
object is at an invalid
world position

Left 4 Dead Falling through the
floor of an elevator

l4d_fall.mp4

Object out of bounds
at a specific state

Only during certain
game states, an object
is at an invalid world
position

Left 4 Dead Escaping the bound-
aries of a scripted se-
quence by using clip-
ping errors

l4d_sequence.mp4

Invalid graphical repre-
sentation

An object appears in
the game world incor-
rectly

Elder Scrolls IV:
Oblivion

Showing a swimming
animation when on
land

oblivion_swimming.
mp4

Invalid value change The intended internal
value change by an
event in-game is incor-
rect

Grand Theft Auto IV Bullets not doing any
damage

gta4_bullets.mp4

Artificial stupidity AI displays poor rea-
soning

Knights of the Old Re-
public

AI ally walks onto a
land mine

kotor_mine.jpg

Invalid information ac-
cess

Player is afforded
information that she
shouldn’t have

Call of Duty: World at
War

Seeing through walls codww_seethrough.mp4

Lack of required infor-
mation

Player is not afforded
information that she
needs

Mass Effect Camera pointing in the
wrong direction

me_camera.mp4

Information out of or-
der

Player acquires infor-
mation about the game
world in an unexpected
order

Knights of the Old Re-
public

Characters request
player to undertake
already completed
quest

kotor_info1.mp4

Action when not al-
lowed

Object in game world
can take action when
action is supposedly
paused (eg. cut-scene,
game pause)

Goldeneye Being able to shoot a
character during a cut-
scene

goldeneye_fire.mp4

Action not possible Object in the game
world cannot take ac-
tion when it is allowed
to

Pokémon Gold Can’t pick up item pokemon_action.mp4

Table 1: Descriptions and examples of non-temporal failures. Reference IDs can find videos and images
online at http://www.zenetproject.com/video:[ID] (without square brackets).

a certain degree of rashness from enemy NPCs in order to
make them easy to defeat in combat, but not so much so
that they are suicidal (unless this fits with the world fic-
tion, such as if they are zombies). Conversely, one expects
a certain degree of restraint by ally NPCs so they do not
die quickly or steal kills from the player, but not so much
that they are deemed useless in battle. In contrast, players
do not expect such complexity of thought in the enemies of
a platformer; moving backwards and forwards is intelligence
enough, and thus would not be categorized as a failure. We
would also not categorize a failure if the AI has access to
perfect information, unless the player is able to spot the AI
cheating, shattering the illusion of fairness. Any time the

AI fails to meet expectations, we classify this as Artificial
stupidity.

We acknowledge this category is quite broad, and may
well be deserving of a taxonomy of its own. However, in
the context of this taxonomy, we believe this is a suitable
abstraction level for this subject.

4.4.5 Information
The Invalid information access category encompasses fail-

ures that allow the player to gain more information than is
expected by the game design. This category includes seeing
through walls or gaining complete information on a game
map that should have a fog of war.

Category Description Game Example Reference ID

Invalid position over
time

An object is moving in
an invalid way

Grand Theft Auto IV Being launched into
the air, moving too
quickly

gta4_movement.mp4

Invalid context state
over time

An object is placed into
a state for an incorrect
amount of time

Street Fighter II Character is stunned
for entire round

sf2_stunned.mp4

Invalid event occur-
rence over time

An event is allowed to
happen too often or too
infrequently

Left 4 Dead Cycling weapons al-
lows melee hits to oc-
cur too quickly

l4d_sequence.mp4

Interrupted event An event that was in
action has now stopped
before ending

Call of Duty 4: Mod-
ern Warfare

Characters stop mov-
ing in a cut scene

cod4_stall.mp4

Implementation re-
sponse

Game does not func-
tion at the speed re-
quired

Rainbow Six Vegas 2 Lag when shooting
particular NPC

rainbow6_lag.mp4

Table 2: Descriptions and examples of temporal failures. Reference IDs can find videos and images online at
http://www.zenetproject.com/video:[ID] (without square brackets).

The counterpart to Invalid information access is Lack of
required information, where the player should be privy to
some information that she is not. This category is actually
quite varied: it classifies a malfunctioning camera (not af-
fording the player visual information required to play), audio
not playing (not affording the player notification of events
or story information) or some graphical information not ap-
pearing on-screen (this could also be categorized as Invalid
graphical representation).

The final Information category is Information out of order,
which classifies events when the player has received informa-
tion in an unexpected order. This failure is most likely to
occur in role-playing games, where players often have mul-
tiple methods of receiving the same information, such as
interrogating an NPC, reading a note, or stumbling across
an object. Once the information is acquired, it is possible
that other aspects of the game world are unaware the player
has that knowledge, and continue to act as if the player does
not have that information. When related to an NPC specif-
ically, such a failure can also be classified under Artificial
stupidity.

4.4.6 Action
Action when not allowed includes actions being taken while

the game is paused or playing a cut-scene, as well as scripts
executing when they are not allowed to yet, such as a wed-
ding scene in Fallout 3 beginning when the bride and groom
have not arrived at the church1. Action not possible is the
realm of actions that the game should allow, but are not be-
ing executed, such as a light switch not activating the light,
or a weapon being dropped on the floor that the player can-
not pick up.

4.4.7 Invalid position over time

1http://www.zenetproject.com/video:fallout3_
action.mp4

Moving on to temporal failures, the first category is In-
valid position over time. Often, this category describes in-
valid movements, such as rapid accelerations or hovering in
the air, but can also include objects teleporting around the
world due to poor physics or faulty world updates. This cat-
egory also describes the lack of expected movement, such as
an NPC that is in a pathfinding mode but is stuck against a
piece of geometry and hasn’t been able to move for a period
of time.

4.4.8 Invalid context state over time
Invalid context state over time applies to objects that stay

in a state for too long or too infrequently. State is used only
to mean the user-observable characteristics that an object
is showing, not the actual flags used in the implementa-
tion. We include such failures as being stunned for too long,
an NPC that stays in an alert mode when it should have
switched to a patrol mode, or a character in an MMO that
has remained dead and not respawned correctly.

4.4.9 Invalid event occurrence over time
Invalid event occurrence over time classifies discrete events

that occur too frequently or too infrequently. Discrete events
include incidents such as firing a gun, throwing a punch,
sacking a quarterback and performing a jump. This cate-
gory is curious in that there are probably far more exam-
ples in this category from a game design specification not
working as intended than there are implementation faults.
Examples of game design possibilities include any method
of gaining more resources than intended in an RTS game,
or flash knockouts in UFC 2009 Undisputed being too com-
mon. A concrete example of an actual implementation fail-
ure is provided in Table 2, where the ability to quickly switch
weapons allows melee hits to occur too quickly.

4.4.10 Interrupted event
An Interrupted event is any action in game that was previ-

ously operating but has terminated abruptly against expec-
tations, such as a sound effect partially playing or characters
that were moving stopping suddenly. For example, if a char-
acter is speaking to you and the dialogue sound file is cut-off
for no apparent reason, then this is an interrupted event. If
the dialogue is cut-off because the character is killed half-way
through speaking, then this meets the player’s expectations
of the game world, and thus is not a failure.

4.4.11 Implementation response issues
Implementation response is the category most closely

aligned to how the game interacts with the base hardware.
This category covers failures where some aspect of the hard-
ware is not performing at an optimal speed. Such failures
include network lag, input lag (time from pressing a but-
ton to something occurring in game) or frame rate fluctu-
ations. Note that this category only covers issues due to
errors in the software code; we do not include failures that
are caused by errors in the hardware or network itself. Our
example in Table 2, Rainbow Six Vegas 2, clearly shows lag
due to some implementation failure. The player is able to
move correctly before shooting a particular NPC which then
causes the game to exhibit lag. Turning around and facing
the other direction causes the lag to stop again, eliminating
other, more transient explanations, such as network conges-
tion.

5. VIDEO GAME DESIGN FAILURES
In the creation of this taxonomy we have taken steps to

only consider failures caused by implementation faults, and
not faults in the game design itself. Without the ability
to consult the game design document, we cannot ascertain
whether the on-screen behavior is intended, and we do not
wish to make a value judgement as to whether some oper-
ation of the game design is negative. For example, snaking
in F-Zero GX and rocket jumping in Quake appear to be
failures. However, they have been claimed as intended tac-
tics for advanced players [7, 8]. Whether these tactics were
intentional before release is, as always, up for debate!

Even aspects of gameplay that appear to be important
cornerstones of game design are often deliberately violated.
Breaking such rules is, in itself, part of the creative expres-
sion of the game designer. For example, September 12th [12]
cannot be “won” in any legitimate sense of the word. The
game places you as a military commander who is able to
launch air strikes against terrorists. However, the missiles
have a lag before they land, and invariably hit civilians,
radicalizing others. Doing nothing results in the terrorists
walking freely around the city. Whether the player chooses
action, or inaction, the terrorists cannot be removed and so
the player cannot reach any satisfying win state. Similarly,
other tenets of game design, such as not making games too
difficult so as to cause anxiety rather than engagement [13],
are violated in order to create unique experiences. Ninja
Gaiden on the Xbox was deliberately very difficult, so much
so that a subsequent release, Ninja Gaiden Black, had an
easier setting.

By treating game design as an artistic expression, rather
than a goal that can either succeed or fail, it becomes clear
that it is an impossible task to place any aspects of a game
design into a taxonomy that testers can use to evaluate
against. This gets at the heart of the difference between the
notion of correctness prevalent in most software engineering

tasks versus in video games. The vast majority of computer
software either performs a service (such as an operating sys-
tem or a web server), is a tool (such as a word processor or
spreadsheet) or is a controller (such as the software inside
cars and planes). For such software, it is reasonable to talk
about faults in their requirements or design, for if the service,
tool, or controller does not provide necessary functionality,
it is clearly not as useful, and should be changed. Games
are different, as their goal is to evoke a certain emotional
reaction, be it entertaining and/or meaningful. In contrast
to most software that intends to be productive, the goal of
game software is to be consumptive, converting electricity
into an experience. Since people find enjoyment or mean-
ing in a wide range of experiences, it is at best challenging,
and at worst impossible, to objectively identify game design
faults.

This is not to say that there is no overlap between the
taxonomy categories with failures that could arise from game
design missteps. Let us consider Deus Ex, which allowed
players to climb up walls by jumping on mines placed on
the wall (Category: Object out of bounds for any state)2.
One could conceive that this a design fault, where the game
design document specified that all solid objects could be
jumped upon. It could be an implementation fault, where a
designer accidentally specifies that the mine can be jumped
upon. Regardless, we see that the line between design and
implementation is blurry, and ideas within the taxonomy
could be more applied to game design in the future.

That being said, there are game design failures that do not
yet fit anywhere in the taxonomy, such as an asymmetrical
map providing benefit to one team over another, dominant
strategies, as well as our previous unwinnable game or dif-
ficulty examples. Such examples would need to be included
should one wish to explore a game design issue taxonomy.

6. UTILITY
We envisage that this taxonomy will find the greatest util-

ity in enabling testers to construct a more systematic ap-
proach to testing.

Vijayaraghavan & Kaner used a taxonomy to help struc-
ture the thoughts of testers for an e-commerce site [16].
They provided headings under which to think about prob-
lems, such as asking what possible failures could occur in
regards to internationalization. They found this improved
the number of relevant, focused failure cases produced.

This approach will also work well in the video game
domain, but games are more complex than a common
e-commerce site. We advocate utilizing a “divide-and-
conquer” methodology, and applying the taxonomy to in-
dividual objects rather than using the taxonomy with the
whole game at once. We could apply the taxonomy to the
player character and generate a set of test cases, and then
categorize failures related to specific NPCs and generate a
different set of failure cases, and so on. This would be re-
peated for all objects of interest in the game world.

Let us return to the Jesus Shot, and imagine the failures
that could have led up to this one, as well as all the possi-
ble descriptions of the Jesus Shot itself. What could those
failures be? Using our methodology, for the ball we gen-
erated: ball can land in water without being placed out of
play (Category: Object out of bounds for any state); ball is

2http://www.zenetproject.com/video:deusex_mine.mp4

Bug taxonomy
categories

Conditions to
check in-game

Manual test
cases

Zenet rules

Suggests
Leads to

Figure 3: The possible uses of the failure taxonomy.

playable from water (Category: Action when not allowed);
ball is not repositioned on grass after it lands in water (Cat-
egory: Action not possible); ball can roll into water without
being placed out of play (Category: Invalid position over
time); ball is marked as out-of-play, but never returns to
play (Category: Invalid context state over time); ball be-
ing placed on grass after hitting the water can be cancelled
(Category: Interrupted event). For the Tiger Woods model,
we generated: Tiger can stand on water (Category: Object
out of bounds for any state); Tiger can swing when on water
(Category: Action when not allowed).

We do not claim this list details all the possibilities, but
thinking about individual objects seems to allow for much
greater coverage: the Jesus Shot, in its description, implies
that the failure is related to the player model being able
to stand on water. However, our failure list indicates that
it’s more likely that the failure originates from some fault
associated with the ball.

Up to this point, we have focused on using the taxon-
omy with today’s approach to bug fixing: employing human
testers, sometimes in the hundreds, to explore the game and
try and expose failures [14]. However, we anticipate the
taxonomy can serve other purposes in the future. We in-
tend to use the taxonomy to generate failure conditions to
be inserted into our tool, “Zenet,” that can repair failures
at runtime [9]. Figure 3 illustrates the similarities between
the workflow required for human testers, and that for gen-
erating Zenet rules. The taxonomy suggests conditions that
should be checked in-game. We can then either use human
testers, or encode those conditions in Zenet which runs a
rule engine to evaluate whether failure conditions are met.
Simple non-temporal failures, such as Object out of bounds
at all times, are easily expressed in the rule engine. Our rule
engine is also designed to handle temporal failures, and can
check Invalid position/context state/event occurrence over
time failures by setting timers. The taxonomy not only
helps us generate conditions to encode in Zenet, but also
validates the tool’s coverage, an important part of any fu-
ture work into the automated detection or repair of video
game failures.

7. CONCLUSION
This paper presents a taxonomy of video game failures,

also available online in the form of a living document that
can be improved by the collective experience of the gaming
community. The taxonomy is validated with numerous ex-
amples, illustrating the wide breadth of failures in modern
games. Not only will the taxonomy improve the effectiveness
of pre-release testing, but it creates the vital groundwork to
allow validation of exciting new research in video game fail-
ure reduction. Initiatives to investigate how to detect and
repair bugs in games can begin, and Zenet is presented as
one possible method.

We hope that the taxonomy will encourage others to take
up the challenge of reducing game failures, ultimately lead-
ing to new technologies that ensure gamers around the world
have positive, interesting and exciting experiences.

8. ACKNOWLEDGMENTS
The authors would like to thank Damián Isla for his in-

put on the taxonomy, as well as the members of the Game
Network mailing list for their input, including José P. Zagal,
Andrew Armstrong, Jennifer Whitson, Louise Peterson and
Annika Waern.

9. REFERENCES
[1] Common vunerabilities and exposures.

http://cve.mitre.org/.

[2] Video game failure archive.
http://www.zenetproject.com/taxonomy.

[3] Avižienis, A., Laprie, J. C., Randell, B., and
Landwehr, C. Basic concepts and taxonomy of
dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing 1, 1 (January
2004), 11–33.

[4] Bainbridge, W. A., and Bainbridge, W. S.
Creative uses of software errors: Glitches and cheats.
Social Science Computer Review 25, 1 (February
2007), 61–77.

[5] Beizer, B. Software Testing Techniques, 2 ed. Van
Nostrand Reinhold, 1990, pp. 33–34.

[6] Hind, C., and Bell, D. Setting the bar: Establishing
bug criteria to save time, money, and sanity. January
2007.

[7] IGN. Fact or Fiction: The 10 Biggest Rumors on
GameCube, August 2003.
http://cube.ign.com/articles/432/432558p3.html.

[8] Killough, L. Doom level history. http://www.rome.
ro/lee_killough/history/doomqna.shtml.

[9] Lewis, C. Zenet: Generating and enforcing real-time
temporal invariants. In Proceedings of International
Conference of Software Engineering (ICSE 2010)
(May 2010). To be published.

[10] Lough, D. L. A taxonomy of computer attacks with
applications to wireless networks. PhD thesis, Virginia
Polytechnic Institute and State University, 2001.

[11] McElroy, J. See Tiger Woods actually make the
Jesus Shot, August 2008.
http://bit.ly/joystiq-jesusshot.

[12] Newsgaming. September 12th [online].
http://www.newsgaming.com/games/index12.htm.

[13] Salen, K., and Zimmerman, E. Rules of Play. MIT
Press, 2004, pp. 350–353.

[14] Starr, K. Testing video games can’t possibly be
harder than an afternoon with Xbox, right? Seattle
Weekly (July 2007).

[15] Tschang, F. T. Videogames as interactive
experiential products and their manner of
development. International Journal of Innovation
Management 9, 01 (2005), 103–131.

[16] Vijayaraghavan, G., and Kaner, C. Bug
taxnonomies: Use them to generate better tests. In
STAR EAST (May 2003).

